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Abstract 
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is both conserved and expended  uniformly. Results are derived  for 
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the constellation is in free  space, that the spacecraft  mass is time- 

invariant, and that  the thrusters can  produce thrust in  any direction. 

An open-loop  control algorithm is  derived  by  minimizing a cost  func- 

tion that trades off total fuel  minimization and fuel equalization. The 

associated optimization problem  is  shown to be amenable to  standard 

algorithms. Simulation results using a four-spacecraft constellation 

are given. 

Introduction 

Multiple  spacecraft  formation flying is  emerging as an  enabling  technology 

for a number of planned NASA missions. An example  is  the proposed sep- 

arated spacecraft  interferometry missions.' Since the life expectancy of a 

satellite is limited by its fuel, fuel optimization  is  critically  important  to for- 

mation  control  algorithms. For various  applications of spacecraft  formation 

flying, including  interferometry, the  formation is  required to assume  several 

orientations.  In  this  paper we will consider the problem of rotating a forma- 

tion  from  one  orientation to another. A key observation is that  the  inertial 

point  about which the  formation  rotates  determines  the  amount of fuel con- 

sumed by each  spacecraft. For example, if the formation  rotates  about a 

single spacecraft,  then that spacecraft will not  consume  fuel, while the  other 

spacecraft  consume  disproportionately  large  amounts of fuel. The  objective 

of this  paper is to evaluate  strategies for determining a fuel optimal  point 

of rotation given the  current  and desired constellation  configurations and ro- 

tation angles. In  evaluating 

interest: the  total fuel used 

these  strategies,  two  quantities  are of primary 

by the spacecraft in the  constellation  and  the 
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distribution of fuel usage among  the spacecraft  in the  constellation. Not  only 

is it desirable to minimize the  total combined fuel expended by the formation 

during a maneuver,  it is perhaps even more  desirable to ensure that no  space- 

craft is  starved of fuel, i.e., it is  desirable that all of the spacecraft run  out of 

fuel  simultaneously. The reason that  it is important  to avoid fuel starvation 

for  interferometry missions is because when one  spacecraft runs  out of fuel 

the mission must  be  terminated, even though the remaining  spacecraft still 

have fuel. It turns  out  that fuel minimization  and  equalization  are  compet- 

ing  objectives. The  contribution of this  paper  is to derive open-loop  control 

strategies  that explicitly tradeoff these two objectives. 

Central to these  control  strategies is the determination of the point of 

rotation for the constellation.  This  paper will explore how to pick a point 

of rotation such that  the fuel distribution at the  end of the maneuver  is 

equalized and  the  total fuel expended by the  constellation is  as  small as 

possible. This is  done by formulating a cost  function  containing two terms. 

The first term penalizes the fuel expended  during a maneuver. The second 

term is  motivated by the  entropy  function from  information  theory which has 

the  property  that  it is maximized by a uniform  probability  mass  function,2 

thereby  penalizing an  unequal fuel distribution at the end of the maneuver. 

The point of rotation for the  constellation is  obtained by optimizing  this  cost 

function.  Once  the  point of rotation is determined, it is fixed for the  duration 

of the constellation  rotation  and  cannot  adapt to reflect fuel expenditure that 

may be different than  what was anticipated. 

Wang & Hadaegh developed formation flying strategies for tightly con- 

trolled  satellite constellations  using  nearest  neighbor  tracking laws to main- 
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tain relative  position and  attitude between ~pacecraf t .~  Their  approach  is 

extended in Ref. 4 to  the problem of continuous rotational slews. 

The application of space-based formation flying to interferometry is dis- 

cussed in Ref. 1. DeCou5 studies passive formation  control for geo-centric 

orbits in the context of interferometry. McInnes6 uses Lyapunov control func- 

tions to  maintain a constellation of satellites  in a ring  formation. Ulybyshev7 

uses an LQ regulator  approach for relative  formation keeping. Formation 

initialization  has  been  studied  in Ref. 8. 

An  approach  related to Ref. 3 is  reported  in Ref. 9. The basic  idea  is to 

treat  the spacecraft  constellation as a system of bodies that  are fixed relative 

to each other,  and  then control the  system as a whole. 

Preliminary  results were originally  reported  in Ref. 10, where fuel  opti- 

mization was performed  in two dimensions.  Similar  results are  reported in 

Ref. 11 where the spacecraft are  not required to maintain  relative  positioning 

throughout  the maneuver. 

The remainder of this  paper is organized  as follows. In the first  section our 

notation is defined and  the basic assumptions  made  throughout  the  paper  are 

stated.  In  the second section the cost function  is defined, and  the basic open- 

loop  control  algorithm  is  derived.  The  third  section  analyzes the cost  function 

and discusses an optimization  algorithm.  In the  fourth section  simulation 

results  using  a  constellation  with  four  spacecraft  are discussed. Finally, the 

last section gives our conclusions. 
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Definitions and Assumptions 

This  section establishes the  notation  and  assumptions  that will be used 

throughout  the  paper. Assuming that  there  are N spacecraft  in the con- 

stellation, define N + 2 coordinate  frames  as follows. Let CO be  the  inertial 

coordinate  frame  with  orthonormal basis vectors {io, j,, ko}. Let CR be a 

coordinate  frame designated as the  “rotation  frame,”  with  orthonormal basis 

vectors {iR, j,, kR}. The  frame CR is used to specify the  point of rotation of 

the constellation.  With each of the N spacecraft  is  associated a coordinate 

frame Ce with  associated  orthonormal bases {it, j e ,  kt}. 

Let re, and rR be  the position  vectors of coordinate  frames Ce, and CR 

respectively, in the  inertial frame. Also let r a  be defined as the vectors  from 

CR to Ce. To maintain  the constellation  formation throughout a rotation 

maneuver, it is desired that rm remain  constant  with  respect to  the  rotation 

frame CR. The geometry is shown in  Figure 1. 

Define Me to be  the mass of the  tthspacecraft,  and  fe(t>  to  be  the fuel 

mass  contained  on  the  Phspacecraft at time t. Furthermore,  assume each 

spacecraft  is  equipped  with  an  orthogonal  set of thrusters  capable of pro- 

ducing  thrust Te in  any  direction. The dynamics for the  fthspacecraft  are 

modeled by the following equations: 

( 0; otherwise, 

(0; otherwise, 
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where y is a proportionality  constant,  and where Tat, T,e and Tte are  the 

axial,  radial,  and transverse  components of Te expressed in the Ce coordinate 

frame. 

The control  objective is to  rotate  the  entire  constellation  through  an angle 

$ about a unit vector z which is referenced to  the coordinate  frame CR. This 

rotation  can be specified by a unit  quaternion q = zT sin(#/2),  cos($/2)) . 

Given a rotation  quaternion q, the  quantities z and # can  be  found by the 

inverse quaternion formulas given in Ref. 12. 

( 
T 

Assumptions 

The  major  assumptions  made  throughout  the  paper  are listed below. (1) The 

constellation  is  in free space.  (2) The  thrust  magnitude of the  thrusters for an 

individual  spacecraft is finite, but collectively the  thrusters  can  produce force 

in  any  direction. (3) Each  spacecraft  is a rigid body  with  mass that is  time- 

invariant. (4) Rotations of the spacecraft are carried out using  means other 

than  thrusters (e.g., momentum  wheels),  therefore rotational  motion is not 

considered when calculating fuel usage. (5) The position re of each spacecraft 

can  be  determined  with  respect to  the coordinate  frame Co. (6) The  thrust 

magnitude is allowed to range  continuously between the  saturation  limits of 

the  thruster. 

Note that these  assumptions  imply  perfect  navigation  information  and 

perfect thruster performance.  Robustness of the derived methods  with re- 

spect to  imperfect  navigation  information  and  thrusters  has  not been studied. 

If any of the above assumptions  are  relaxed,  the  results of this  paper will 

need to  be modified. For example, if the  constellation  is  not in free space, 
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then  orbital  dynamics will  affect the fuel consumption. If certain  thrust di- 

rections  cannot  be  produced,  then a sequence of maneuvers  may be required 

to accomplish a rotation,  thereby requiring a different fuel analysis. If the 

mass of the fuel is on  the order of the mass of the spacecraft,  then the analysis 

in  this  paper would need to be modified to use the rocket equation.  Similarly, 

rotational  dynamics would add  an  additional level of complexity. Addressing 

the  last two  assumptions  is necessary to accomplish fixed formation  maneu- 

vers in general. 

Static  Rotations 

This section derives an  algorithm for picking the location of the  rotation 

point, i.e. r R ,  such that given the  initial fuel distribution {fi(to), . . . , f N ( t O ) } ,  

the final  fuel distribution { fi (to+tf), . . . , f N ( t o + t f ) }  minimizes the following 

functional: 

The first term in this  functional  represents  the  total  amount of fuel  expended 

by the constellation. The second term is  motivated by the negative  entropy 

of a probability  distribution [2, pp. 12-15], which is  minimum for a uniform 

distribution, Le., the second term will be minimized when f i : ( to  + t,) = 
fj(to + t f )  for all i, j E {I , .  . . , N } .  
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An alternative  to  entropy is the function 

N N  

i=l j # i  

which is also minimized when fi (to+tf) = f j  (to+tf), The use of Equation (3) 

gives similar  results to those  reported  in  this  paper.  The  entropy  term was 

selected  because  in  simulation  studies, it  equalized the fuel distribution more 

uniformly. 

To minimize  Equation (2),  we need to express f e ( t o  + t f )  in terms of rR. 

For a given rR, fe(to+tf) is  found in two steps:  first,  determine a constellation 

rotation  trajectory  within  the  thrust  capability of each spacecraft in  the 

constellation;  and  second,  calculate the fuel consumed by each  spacecraft  in 

following the  rotation  trajectory.  The  details of these steps  are discussed in 

the  next two  sections. 

Constellation Rotation Trajectory 

First  note  that  the  rotational acceleration for the  constellation is  limited by 

the linear  acceleration  capability of each spacecraft and by the distance of 

each  spacecraft  from  the  axis specified by z. Since we are considering the 

rotation of individual  spacecraft about a fixed axis  in  space, the acceleration 

of each spacecraft  is composed of transverse and  radial  (centripetal) acceler- 

ations  with respect to  the  rotation axis: at = ate + a,e, where ate and a,! are 

the transverse  and  radial  accelerations, respectively. 

Let de be  the  shortest vector between the  rotation axis z and  the  tthspacecraft, 

and define $(t) as the constellation rotation angle. The vector de can  be  found 

8 



by using the geometry shown in  Figure 2. The  projection of r a  onto the z 

axis  is given by zTrm, where z and r a  are referenced to  the  same coordinate 

frame.  Therefore, the  shortest vector from the z axis to Ce is 

de = rm - (z r,)z = ( I  - zz )rm, T T 
(4) 

where I is the 3 x 3 identity  matrix. 

For general rotations llaTeII = lldell d2 and llagll = lldell 4, therefore it 

can  be seen that  the magnitude of the acceleration for each spacecraft  is 

proportional to  the distance of the spacecraft  from the  rotation axis: 

If we define ‘Te as the  magnitude of the smallest available maximum  thrust 

in  any  direction for the  fthspacecraft (i.e.,  spacecraft f can  produce a thrust 

of at least re in  any specified direction),  then  the lowest maximum  linear 

acceleration that each spacecraft is capable of is Te/Me: 

The maximum  angular  acceleration of the  constellation will be  maximally 

constrained by the linear  acceleration  capability of the  spacecraft in the con- 

stellation. Specifically, the spacecraft  with the largest ratio between the 

distance  from the z axis (Ildell) and  its acceleration  capability (TelMe), will 

limit the angular  acceleration of the entire  constellation.  Denoting the  index 
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of the limiting  spacecraft  as /? gives 

The  angular  motion of the  entire  constellation, given by q5(t), must  be con- 

strained according to  the following relation: 

By constraining  the  motion in this  manner, the required thrust  to  track 

whatever  trajectory is specified will never exceed the  thrust capabilities of 

any of the  spacecraft.  Furthermore,  this conservative approach leaves some 

excess thrust  capability for rejecting  disturbances  or  responding to tracking 

errors. 

To estimate  the  amount of fuel spent by each spacecraft during a con- 

stellation  rotation, a trajectory for the  rotation  must  be  determined.  The 

analysis given here  assumes that  the constellation  is rotated  via a trajectory 

corresponding to  a bang-off-bang acceleration profile. This  thrust profile is 

optimal [13, pp. 675-7101 for a double-integrator  plant  with  actuator  satura- 

tion.  Although  linear  accelerations  during  the  acceleration  and  deceleration 

phases of the  trajectory  are  not  constant for each spacecraft (the  centripetal 

component  changes  with d), the  assumption of a bang-off-bang trajectory is a 

reasonable  approach for the constellation rotation problem. The analysis  ap- 

proach  taken  is  not  limited to bang-off-bang trajectories.  Other  trajectories, 

such as polynomial  splines, could be analyzed  as well. 

Letting d ( t )  be  the  rotation angle of the constellation about  the z axis at 
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time t ,  where to is the  starting  time for the  rotation,  the  rotation  trajectory 

for the constellation  is given  by the following equations 

where t ,  is the  width of the  thrust pulse. 

Notice that  the maximum  linear  acceleration for each of the spacecraft 

in  the constellation  occurs at t - to = t ,  when $(t) and $(t) are at their 

maxima simultaneously: $(t, + t o )  = a and $(t, + t o )  = at,. 

With  the constellation  geometry  and  trajectory  type  determined, the  next 

step is to formulate  an expression that will allow us to solve for the unknown 

trajectory  parameters (a and t,) given the  constellation  parameters (IldpII, 

7-0, and Mp) and  the specified trajectory  parameters (4  and i f ) .  This is done 

by first setting  the  maximum acceleration of spacecraft ,O (which is  tracking 



the bang-off-bang rotation  trajectory) to  the acceleration  bound: 

Using the  fact  that 6 = $(tf  +to) = atw(tf -tw) we can solve for a to  obtain 

By substituting for a in  Equation (8) and  manipulating  the  resulting expres- 

sion, we find that 

d2 + b" 2 
Tot; 

c2(1 - c)2 (1 - c ) ~  = (lldpll M p )  

where 

Further  manipulation yields a 6th-order  polynomial in c: 

p+p-K p p  
Q(C) = c6 - 4c5 + 6c4 - 4c3 - c2 + 2 ° C  - - = 0 (12) 

K K K  

2 

where K = (+-) . When solving this expression for e, we are  interested 

in the real roots  that fall within  the range (0, i), since roots  outside  this  range 
do MP 

are physically meaningless. As Figure 3 depicts,  solution of Equation (12) 

results in four  scenarios of interest: (1) no roots between 0 and f ;  (2) two 

identical  roots between 0 and i; (3) two different roots between 0 and i; and 
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(4) one root between 0 and i. Case 1 results when the  trajectory  duration t f  

is too  short for spacecraft ,O to accomplish the  trajectory given the  rotation 

angle and  its acceleration  capabilities. Case 2 occurs when the minimum 

possible trajectory  duration  that is within  the  capabilities of spacecraft ,O is 

chosen. Case 3 is  unusual  in that two different values of c are found which 

result  in  Equation (8) being  satisfied. However, the smaller value of c gives 

a more fuel-efficient trajectory  and therefore  is chosen when Case 3 occurs. 

Case 4 occurs when the acceleration  capabilities of the spacecraft  are  not 

stressed by the selection of t f .  

In  selecting the  trajectory  duration, two specific conditions  are of interest: 

Case 2 which results  in  the minimum possible trajectory  duration for the 

formation,  and  the  transition between Cases 3 and 4 where one  real root is 

equal to i. We will consider the  latter condition  first. 

If t f  is chosen to be sufficiently large,  Case 4 results  and  the desired 

trajectory is well within the capabilities of the spacecraft. The  transition 

between Case 3 and Case 4 occurs when t, = t f / 2 .  Letting t, = t f / 2  in 

Equation (9) and  substituting  into  the acceleration  bound  in Equation (8) 

gives 

Solving for t f  gives 
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When tf = tf ,4  the result  is  Case 3 with one of the  roots of Equation (12) 

being  exactly $ as expected. If tf > tf ,4  then  there is always a unique  solution 

in the interval (0, i). 
Of greater  interest  is  the  minimum possible trajectory  duration, tf,min, 

for the spacecraft  formation  (Case 2). For a given constellation of spacecraft 

(with  predetermined  capabilities)  and a specified rotation angle 4, the selec- 

tion of trajectory  duration t f  determines which of the above cases results. 

As can  be seen from  Figure 3, Case 2 occurs when Q(c)  = 0 and = 0 for 

the  same c = Q: = = 0, where 

dQ 2(84 + 8 - K) J2 

de K 
- = sC5 - 2oC4 + 2dC3 - 12c2 - 

K 
C +  2- (13) 

is determined  from  Equation (12). By equating  the expressions for @(e) and 

&!E dc the following polynomial expression results: 

8 + @ - 1 3 K   2 ( 8 + 2 @ - K )   3 8  
c6 - 10c5 + 26c4 - 28c3 - K c2 + K 

e - - = ( )  
K '  

(14) 

where  in this case, K = (&) '. This expression can be solved for c = Q 

by finding the real  root between 0 and $. Once Q, is known, the minimum 

final time tf,min can 

tf,min 

be calculated by rewriting  Equation (10) as 

Notice that tf,min is dependent  on eo, and  that eo is dependent  on K,  and 
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that K is  dependent  on tflrnin. To solve for Equations  (14)  and (15) 

are solved recursively starting  with  an  initial  estimate of = Con- 

vergence to  the solution  typically  requires only several recursions.  From the 

value of c found  from the  roots of Q ( c ) ,  values for Q and t ,  can  be  calculated 

from  Equations (9) and (11) respectively. 

In  summary, given a specified constellation  rotation  angle 4, trajectory 

duration t f  > tf,rnin, and  the  thrust  capability ~ p ,  mass Mp, and  distance 

from  the  rotation axis lldpll of the  limiting  spacecraft,  the  parameters  that 

complete the characterization of the  constellation  rotation  trajectory  can  be 

determined: the switching time t ,  and  the  angular acceleration Q. 

In  this development, we treat  the  trajectory  duration,  or  alternatively  the 

time required for the  formation  reorientation to be  completed,  as a parameter 

to be selected.  Intuitively, the  trajectory  duration also strongly affects the 

amount of fuel required to complete the maneuver. If fuel minimization is a 

high  priority, the  trajectory  duration should be selected as large  as possible 

while still  meeting the mission objectives. 

Fuel Usage 

We must now derive an expression that relates the fuel expended by the 

Phspacecraft to  the  trajectory of the constellation. The fuel usage for each 

spacecraft will vary throughout  the  rotation maneuver and  can  be calcu- 

lated for each of the  three phases of the  trajectory:  acceleration,  coast,  and 

deceleration. 

During the acceleration  phase, fuel is  expended to accelerate the space- 

craft transversely and  radially  with respect to rotation  about  the z axis. 
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Drawing on  Equation (1) the fuel expended by spacecraft t during  the accel- 

eration  phase  can be  calculated as follows: 

During  the  coast  phase of the  trajectory (tw < t-to 5 t f  -tw), the  spacecraft 

will need to  thrust  to provide the  centripetal acceleration  required to track 

the  arc  traced  out by the constellation. The fuel required to accomplish this 

is given by 

During the deceleration  phase, fuel is expended to bring  the  spacecraft to 

a stop  and  to keep the spacecraft rotating  about  the z axis. Fuel usage  is 
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calculated  in a manner  similar to  the previous phases: 

The  total fuel consumed by the Cthspacecraft during  the  rotation of the con- 

stellation is given by the  sum of the fuel consumed during each of the  three 

phases: 

The Optimal Point of Rotation 

The results of the previous  section  can be  summarized by the following al- 

gorithm for computing  the cost  function J in  Equation (2). 

Algorithm 1 

Input: T R ,  q, if, P,  and {Q,  Me, re(to), f e ( t o ) ) L ,  

Compute: 

1. 2 ,  4, 
2. rm(to) = re(to) - rR, C = 1 , .  . . , N ,  
3. de(to), C = 1,. . . , N from Equation (4), 

4.  ,B from Equation (5), 
5. c from Equation (12), 
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6. t, from Equation (ll), 
7. a from Equation (9), 

8. f e ( t f  + t o )  from Equation (16). 

Output: J from Equation (2) .  

It is evident  from Equation (2) and  the  algorithm  listed above, that J 

is a complicated  function of rR. It is natural  to wonder about  the difficulty 

of optimizing J .  The  next section  contains a mathematical analysis of the 

cost  function,  and  is followed  by our  recommendations for an  algorithm that 

optimizes J as a function of rR. 

Analysis of the Cost Function 

The objective of this section  is to analyze the  nature of J .  Figure 4 shows four 

contour  plots of J ,  projected  onto a plane  perpendicular to a,  as a function 

of rR for the  parameters listed in Table 1. The ’X’s in the figure represent 

the location of the spacecraft.  The ’0’ represents the center of inverse fuel 

mass, defined as 

Intuitively, r$) will be close to spacecraft that  are low on fuel. Figure 4 (a) 

shows J when the initial fuel is equally distributed  among  the  spacecraft, 

and where fuel  equalization is emphasized.  Figure 4 (b) shows J when fuel 

minimization  is  emphasized.  When p = 0, the  initial fuel distribution is 

not relevant.  Figures 4 (c) and  (d)  are for medium values of 1-1 ( p  = 100). 

Figure 4 (c) shows J when one  spacecraft is almost  depleted of fuel. In  that 
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case, the  optimal rR is  located close to  the spacecraft that is  depleted of fuel. 

Figure 4 (d) shows J when two spacecraft  are  almost  depleted of fuel. In 

that case, the “optimal” rR is centered between the spacecraft that  are low 

on  fuel. 

Figure 4 shows cusps  in the contour  plot J that  appear  to  be aligned  along 

certain lines. These  cusps suggest that  the gradient of J is discontinuous 

along  these  lines. Also, the  smoothness of the contours away from  these 

lines  suggest that J is continuously  differentiable  in  most of R3. These 

observations will be made precise in the following Lemmas. The  apparent 

regions come from the  partitioning  due to Equation (5). Let Dj be the region 

in R3 that is farther from the jth spacecraft than from  any other  spacecraft 

(weighted by Mj/r j ) .  These regions can  be defined explicitly as follows. Let 

Define Dj as  the closure of Dj,  i.e., 

Each  pair of spacecraft define the line 

‘ I  j “ i 

These lines  form the  boundaries of Dj. Figure 5 shows a sequence of plots that 

describe how D3 is defined for a constellation of four  spacecraft. Plots  (a), 
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(b),  and  (c) define the regions corresponding to % lld3 - x11 > 9 Ild4 - x I I ,  
[Id3 - x11 > 9 (IdZ - xII, and % lld3 - x11 > 9 lldl - x11 respectively. 

Plot  (d) defines the region D3 as  the intersection of these  three regions. In a 

similar  manner, regions Dl, D2, and D4 can  be defined. 

73 

The following two lemmas  ensure that for any  configuration of N space- 

craft,  there  are at  most N disjoint regions that completely fill R3. 

Lemma1 D D i n D j = O ,  i # j  

Proof: See the appendix. 

Proof: See the appendix. 

The contours  in  Figure 4 (a)  indicate  that while J is not convex, it is 

continuous  and  has  a  unique  minimum.  The  question  is  whether a gradi- 

ent descent  algorithm  can  be used to minimize J. The following theorem 

characterizes  the  continuity of J and  its  gradient. 

Theorem 1 If E,"=, f e ( t f )  # 0, then the  following statements hold. 

I .  J(rR) is continuous on R3. 

2. If 5 = % for all i, j E 1,. . . , N ,  then J(rR) is continuously difleren- 

tiable  on l R 3 .  

3. Otherwise, it is continuously  differentiable on &Dl (but  not  on  the 

boundaries). 

Proof: See the appendix. 

20 



Optimization Procedure 

All that remains is to choose an  optimization  algorithm that minimizes J in 

Equation  (2) to find the fuel optimal center of rotation rR. Since gradient 

information  is  available, it is possible to use a gradient  descent  algorithm 

that is modified to handle  the possible discontinuities between the regions 

Dl. An alternative is to use a direct  search method such as the Nelder-Mead 

Simplex method described  in Ref. 14  and [15, pp. 305-3091 . The advantage 

for this  particular problem  is that derivative  information  is  not  used,  and the 

algorithm  easily passes over the discontinuities  in the  gradient. Also, efficient 

implementations of the Nelder-Mead algorithm  exist [16, pp. 2.4-2.51. One 

of the disadvantages of the Nelder-Mead algorithm  is that  it  can  be very 

expensive and/or time-consuming for problems  with  objective  functions that 

are severely elongated or when the dimensions of the problem become large.14 

Since Equation  (2) does  not suffer from  either of these  problems, it  appears  to 

be well suited for our  application.  The Nelder-Mead algorithm is initialized, 

by using the center of inverse fuel mass at time to, defined in Equation (17), 

and shown with  an '0' in  Figure 4. The  point rg) is seen to be  relatively 

close to  the desired  minimum of J .  

Based upon  the constellation rotation  trajectory  determined by the opti- 

mization  process, the open-loop control law for each of the t spacecraft  can 
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be found: 

The  torque for 0 I: t < t ,  causes the  formation to LLspin-up,”  the  torque for 

t ,  5 t 5 t f  - t, causes the formation to spin at a constant  rate,  and  the 

torque for t f  - t, 5 t 5 t f  causes the formation to “spin-down.” 

Simulation  Results 

This section  describes  simulation  results using the  approach described in  this 

paper.  Simulations were performed  in Matlab  and Simulink. The numeri- 

cal values used for the  simulation  are given in  Table 1 with the exception 

that  the mass  distribution is changed to M = (200,200,200,200)  (kg).  The 

initial fuel distribution is fe(to) = (1,1,1,1) (kg).  The  parameter p allows 

tradeoffs between minimizing the  total fuel used and equalizing fuel across 

the formation.  When p = 0 fuel is minimized, as p + 00 fuel  is  equalized. 

The fuel used by each spacecraft  after  a single 90 degree rotation is shown in 

Figure 6. Figure 6 (a) is for p = 0 (i.e., fuel minimization),  Figure 6 (b) is for 

p = 100 (i.e. a trade-off between fuel minimization  and fuel equalization), 

and  Figure 6 (c) is when p = lo5 (i.e. fuel equalization).  The  total fuel used 
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by all  the spacecraft is 0.0014 (kg) for p = 0, 0.0015 (kg) for p = 100, and 

0.0016 (kg) for p = lo5. Notice that when fuel is  equalized, it is not neces- 

sarily  minimized.  In  general,  minimization and equalization are conflicting 

criteria. 

The fuel used after  15 consecutive randomly selected rotations, is  also 

shown in Figure 6. Cases where p = 0, p = 100 and p = lo5  are shown 

in  subplots (a), (b),  and  (c) respectively. For p = 0 the  total fuel used was 

0.0058 (kg), for p = 100 (kg) the  total fuel used was 0.0107 (kg), for p = lo5 

the  total fuel used was  0.0116 (kg). 

Conclusions 

The physical location of the axis about which a constellation of spacecraft ro- 

tates,  determines  the fuel consumed by each spacecraft during  the maneuver. 

In  this  paper we have derived an  algorithm that finds the  optimal  location for 

the axis of rotation,  trading off overall fuel minimization  and fuel equaliza- 

tion across a constellation of spacecraft in free space. The  simulation  results 

show that fuel minimization  and fuel equalization are conflicting criteria. It 

is  particularly  important  to  note  that minimum fuel rotations will result  in 

fuel starvation for some spacecraft. Fuel is simultaneously  minimized and 

equalized  only if the spacecraft  are  an  equal  distance  from the center of in- 

verse fuel mass,  and  the  thrust capabilities of the spacecraft  are  identical. 

This would be  the case for three  identical  spacecraft  in  an  equilateral  triangle, 

but is not  true if the spacecraft are  not  identical. 

The control law derived in this  paper defines fuel optimal  trajectories for 
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each  spacecraft  in the constellation.  These  trajectories could be used for 

feedforward control,  with  additional feedback used for robustness to uncer- 

tainties  and  disturbance rejection. Since the  approach  taken is  conservative 

(only the  most performance-limited  spacecraft is at its  thrust  limit at just 

two instants  during  the  trajectory),  the  additional  thrust required for feed- 

back control  could  be easily accommodated by the spacecraft  implying that 

the prescribed trajectories would still  be feasible. 

Finally, the  optimization  algorithm described in  this  paper could be used 

to  determine  the  amount of fuel required by an  entire  interferometry mission. 

If the desired life of the mission, and  the desired star  locations  are known, 

the  amount of fuel required to  transition between stars can be  estimated  with 

the  algorithm described  in this  paper.  This could be embedded  in a larger 

optimization  algorithm  that  computes  the  optimal sequence of stars,  and  the 

resulting fuel required for each spacecraft. If it is  desired, for cost  purposes, 

that  the spacecraft  be  identical,  then  the  optimization  algorithm  should  be 

performed with large p .  
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Appendix 

Proof of Lemma 1 

Suppose that x E Di n Dj,  then 

which is a contradiction. 

Proof of Lemma 2 

Pick an  arbitrary x E l R 3 .  Suppose that x # UZlDi. x Dl a 
ML lldl - X I /  < z lid; - x11 for some 3 E (2 , .  . . , N } .  Re-number the space- 

craft such that 3 = 2, then % [Idl - X I /  < % [Id2 - x / \ .  x &r D2 =+- 
[Id2 - x I I  < z lid; - x11 for some 3 E ( 3 , .  . . , N } .  Re-number the space- 

craft such that 3 = 3, then 9 Ildl - x11 < % lldz - x11 < 2 lld3 - xII. 

71 3 

7 2  3 
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Repeat  the  argument for Ds,.  . . D N - ~  to get 

Now X $! DN lldN - XI1 < lid; - x/I for some 3 E {I,.  . . , N -  1) 

which is a contradiction. 

M? 

3 

Proof of Theorem 1 

Differentiating Equation (2) with  respect to r R  gives 

Assuming that C j  f j ( t f )  > 0, then E is  continuous if f i ( t f )  and e are 

continuous in r R .  From  Equations  (16), (9), and (11) we obtain  the following 

expression for f i  ( tp )  : 

afi(t ) 

Both c and lldill depend  on r R  so 
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where 

is a continuous  function of lldill and 

is continuous  in c as long  as c E [0, i]. lldill = Il(I - zz')(ri - rR)II is clearly 

a continuously  differentiable  function of rR, so the continuity  properties of J 

are  determined by the  continuity  properties of e. c is a root of the  sixth  order 

polynomial given in Equation (12) which can  be  re-written  in the following 

form which is standard for the Evans  root locus: 

-(&4 + &"e2 + 24% - $2 

c6 - 4c5 + 6c4 - 4c3 + c2 ] = o .  

By standard  root locus theory, the  roots  are a continuous  function of = 
I l d a l 1 2 M j ,  where lldpll and ,O are  functions of rR. ,O is a constant  function 

of rR in each region D j ,  with a  discontinuous  switch  on the boundaries. 

Therefore 1/K will also be a continuous  function of rR on each  region,  thereby 

establishing  statement 3 of the lemma.  At the  boundaries lldpll is  continuous 

(but  not differentiable) and so 1/K is  continuous at the  boundary if 5 = !!i 
for all i, j ,  establishing  statement 2. Since is continuous for all but a  set 

of measure zero (the region boundaries), J is  continuous  on  all of R3. 

Tj  
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Figure 1: Problem  Geometry 
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Figure 2: The  distance of the  tthspacecraft to  the z axis. 
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Figure 4: Contour  plots of the function J .  
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Figure 5: Defining  region D3 for the objective  function J .  
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